
Appendix D.  Elevator Control System Case Study

This appendix describes an application of the proof-of-concept prototype, CODA,

described in Chapter 10, to an elevator control system.  The specification for this system

consists of a set of hierarchically arranged data/control flow diagrams, one state-transition

diagram, and a textual description.  The specification is taken from Gomaa.1 [Gomaa93,

Chapter 24]  From this specification, CODA generates, with the assistance of an experienced

designer, four designs.  One design, for an elevator system that has two elevators and five

floors, uses the default target environment description.  For each of two additional

designs, the designer reuses much of the first design but assigns different priorities for

some of the messages exchanged between tasks.  In one case, however, the target

environment does not provide priority, message-queuing services, while in the second

case the target environment does provide priority, message-queuing services.  These two

designs demonstrate how CODA adjusts a design to map priority messages onto the

available services of an intended target environment.  The fourth design, which assumes

the default target environment description, considers an elevator system for a large

building, containing 12 elevators and 48 floors.

1 The elevator control problem dates back to at least Donald Knuth.  The interested
reader can consult a number of treatments of this real-time application. [Armstrong93,
Jackson83, Knuth68, Meyer93, Sanden94]



D.1  Elevator Control System for a Small Building

Figure 59 shows the context diagram for Gomaa’s elevator control system.  As in

previous case studies, the context diagram is annotated with information inferred or

elicited when CODA analyzes the specification.  The context diagram differs from

Gomaa’s in only one way.  Events arriving from external devices are shown in Figure 59

as dashed, directed arcs.  These events, needed to aid in automatic classification of

concepts, are not shown in Gomaa’s context diagram, but can be inferred to exist from

reading the accompanying textual specification.

D.1.1  Analyzing the Specification

Once the data/control flow diagram hierarchy is flattened, the entire data/control

flow diagram for the elevator control system consists of  23 nodes (14 transformations, 8

terminators, and 1 data store) and 44 arcs (23 data flows and 21 event flows).  After

loading the specification, the designer asks CODA to analyze the specification.  CODA

begins by attempting to classify concepts on the data/control flow diagram.

D.1.1.1  Classifying Concepts

CODA inquires about the nature of the terminators and then proceeds with

concept classification until, during stimulus-response classification, an ambiguity

appears.  CODA cannot determine which, if either, of a pair of data flows exchanged

between two transformations, Scheduler and Accept New Request, is sent in response to

the other.  On this point, CODA consults the designer.  The designer recognizes that

neither of these data flows is sent in response to the other; rather the data flows are

534



535

Elevator
Control
System

0

Elevator
Buttons

[Device @]

Elevator
Lamps

[Device @]

Elevator
Door

[Device @]

Direction
Lamps

[Device @]

Elevator
Motor

[Device @]

Floor Arrival
Sensors

[Device @]

Floor
Lamps

[Device @]

Floor
Buttons

[Device @]

Elevator Button
Request
[Input =]

Max. Rate .5
per sec. *]

Direction Lamp
Output

[Output =]

Floor
Sensor
Input

[Input =]
[Max. Rate .1

per sec. *]

Floor Lamp
Output

[Output =]

Floor Button
Request
[Input =]

[Max. Rate .5
per sec. *]

Elevator Lamp
Output

[Output =]

Elevator
Button
Press

[Interrupt =]

Motor Response
[Input =]

Motor Command
[Output =]

Floor Arrival
Sensor Change

[Interrupt =]

Door Command
[Output =]

Door Response
[Input =]

Floor Button
Press

[Interrupt =]

Figure 59.  C
ontext D

iagram
 for an E

levator C
ontrol System



independent of each other.

Another ambiguity arises during the final stage of classification.  CODA cannot

establish whether one transformation, Check This Floor, is a synchronous function or an

asynchronous function.  Upon consulting the designer, CODA learns that the time spent

executing the transformation might unduly delay the invoking function, Floor Arrival

Sensor (see Figures 62 and 63, where the relevant elements of the data/control flow

diagram are shown).  The designer made this judgment after reading the textual

specification accompanying the data/control flow diagrams.  CODA completes the

remainder of the concept classifications without consulting the designer.

D.1.1.2  Eliciting Additional Information and Verifying the Specification

After all concepts are classified, CODA determines that certain input data flows

require a maximum rate.  This information can be used during design evaluation to help

assess the schedulability of the design.  Next, finding no exclusion groups defined for the

specification, CODA invites the designer to define one or more exclusion groups.  The

designer declines.  CODA then invites the designer to define aggregation groups.  Based

upon the textual specification accompanying the data/control flow diagrams, the designer

recognizes that each elevator comprises a door, a motor, a set of lamps, and a set of

buttons.  For this reason, the designer accepts CODA’s offer and defines an appropriate

aggregation group for the elevator.

Next, CODA, finding no locked-state events defined for the specification, offers

the designer the chance to denote locked-state events.  The designer analyzes the

536



state-transition diagram, Figure 60, for the only control transformation, Elevator

Controller, and finds eight locked-state events.  These locked-state events occur because

the Elevator Controller, in most instances, takes one action and then awaits a response

before moving on to a new state.  In fact, only two event flows, Up Request and Down

Request, do not qualify as locked-state events.  These event flows do not qualify because

each of them can arrive any time a client presses a floor button or when the scheduler

schedules an elevator.  The remaining events can only arrive when the Elevator

Controller is expecting them.

After completing elicitation of specification addenda, CODA inquires whether the

designer wishes to update the cardinality of any nodes.2  Here, the designer decides to

establish cardinalities for each node in order to correspond to a specific size of building,

five floors, and a specific number of elevators, two.  Ideally, a design for the elevator

control system would be independent of cardinality; however, CODA makes a number of

decisions about task inversion and module placement that depend upon the relative

cardinalities of various transformations and data stores.

To complete the specification analysis, the designer checks the state of concept

classification and also verifies that all axioms are satisfied.  The specification is then

saved in preparation for design generation.

D.1.1.3  Annotated Data/Control Flow Diagram

The results from CODA’s analysis of the specification are presented as an

annotated data/control flow diagram, shown in Figures 61 through 64.  Figure 61

2 The default node cardinality is one.

537



538

Elevator
Idle

Door Closing
to Move Up

Elevator
Starting

Elevator
Moving

Elevator
Stopping

Elevator Door
Opening

Checking Next
Destination

Elevator at
Floor

Door Closing
to Move Down

Down Request

Door Closed
Down

Close Door

Close Door

Up Request

Up

Door Closed

Departed

Elevator Started

Stop

Approaching
Requested Floor

Stop, Arrived

Elevator Sopped

Door Opened

Pause Time Elapsed

Trigger Check Next Destination
Destination Up

Close Door

No Destination

Close Door

Destination Down

Figure 60.  State-Transition Diagram for the Elevator Controller



539

Elevator
1

Floor
2

Scheduler
3

[Asynchronous
Function =]

Door
Command
[Output =] Door

Response
[Input =]

Motor Response
[Input =]

Motor Command
[Output =]

Elevator
Lamp
Output

[Output =]

Floor Sensor Input
[Input =]

[Max. Rate .1 per sec. *]

Floor Arrival
Sensor Change

[Interrupt =]

Elevator Button Request
[Input =]

[Max. Rate .5 per sec. *]

Elevator
Button
Press

[Interrupt =]

Floor Button Request
[Input =]

[Max. Rate .5 per sec. *]

Floor Button Press
[Interrupt =]

Direction Lamp
Output

[Output =]

Floor Lamp
Output

[Output =]

Service
Request

[Stimulus =]

Elevator
Status

[Stimulus =]

Elevator
Commitment
[Stimulus +]Elevator

Status
[Stimulus =]

Scheduler
Request

[Stimulus +]

Elevator
Arrived

[Stimulus =]

Figure 61.  Subsystem
 D

ecom
position of the E

levator C
ontrol System



540

E
le

va
to

r
C

on
tr

ol
an

d
M

an
ag

em
en

t
1.

1

E
le

va
to

r
B

ut
to

n
1.

2
[A

sy
nc

hr
on

ou
s

D
ev

ic
e 

In
pu

t
O

bj
ec

t =
]

F
lo

or
A

rr
iv

al
 S

en
so

r
1.

3
[A

sy
nc

hr
on

ou
s

D
ev

ic
e 

In
pu

t
O

bj
ec

t =
]

E
le

va
vt

or
La

m
p

1.
6

[P
as

si
ve

D
ev

ic
e 

O
ut

pu
t

O
bj

ec
t =

]

D
oo

r
1.

5
[P

as
si

ve
D

ev
ic

e 
IO

O
bj

ec
t =

]

M
ot

or
1.

4
[P

as
si

ve
D

ev
ic

e 
IO

O
bj

ec
t =

]

E
le

va
to

r
B

ut
to

n
P

us
h

[In
te

rr
up

t =
]

E
le

va
to

r 
B

ut
to

n
R

eq
ue

st
[In

pu
t =

]
[M

ax
. R

at
e 

.5
 p

er
 s

ec
.

*]

F
lo

or
 A

rr
iv

al
S

en
so

r 
C

ha
ng

e
[In

te
rr

up
t =

]

F
lo

or
 S

en
so

r 
In

pu
t

[In
pu

t =
]

[M
ax

. R
at

e 
.1

 p
er

 s
ec

. *
]

E
le

va
to

r 
La

m
p

O
ut

pu
t

[O
ut

pu
t =

]

D
oo

r
C

om
m

an
d

[O
ut

pu
t =

]

D
oo

r 
R

es
po

ns
e

[In
pu

t =
]

M
ot

or
 C

om
m

an
d

[O
ut

pu
t =

]

M
ot

or
 R

es
po

ns
e

[In
pu

t =
]

S
ch

ed
ul

er
R

eq
ue

st
[S

tim
ul

us
 +

]

E
le

va
to

r
C

om
m

itm
en

t
[S

tim
ul

us
 +

]
E

le
va

to
r

S
ta

tu
s

[S
tim

ul
us

 =
]

E
le

va
to

r
R

eq
ue

st
[S

tim
ul

us
 =

]

E
le

va
to

r
A

rr
iv

ed
[S

tim
ul

us
 =

]

F
lo

or
N

um
be

r
[S

tim
ul

us
 =

]
E

le
va

to
r

A
rr

iv
ed

[S
tim

ul
us

 =
]

S
to

p
[S

ig
na

l =
]

O
pe

n
D

oo
r

[S
ig

na
l =

]

C
lo

se
D

oo
r

[S
ig

na
l =

]

D
oo

r
C

lo
se

d
[S

ig
na

l =
]

D
oo

r
O

pe
ne

d
[S

ig
na

l =
]

U
p

[S
ig

na
l =

]
D

ow
n

[S
ig

na
l =

]

E
le

va
to

r 
S

ta
rt

ed
[S

ig
na

l =
]

E
le

va
to

r 
S

to
pp

ed
[S

ig
na

l =
]

E
le

va
to

r 
S

ta
tu

s
[S

tim
ul

us
 =

]

Figure 62.  Decomposition of the Elevator Subsystem



541

Elevator
Controller

1.1.1
[Control
Object =]

Check This
Floor
1.1.3

[Asynchronous
Function +]

Update
Status
1.1.5

[Triggered
Synchronous
Function =]

Check
Next Destination

1.1.4
[Triggered

Asynchronous
Function =]

Elevator Status
and Plan

[Data Store #]

Accept
New Request

1.1.2
[Asynchronous

Function =]

[Update =]

[Store =]

[Store =]

[Retrieve =]

Elevator
Request

[Stimulus =]

Scheduler
Request

[Stimulus +]

Elevator Commitment
[Stimulus +]

Elevator
Arrived

[Stimulus =]

Elevator
Status

[Stimulus =]

Elevator
Status

[Stimulus =]

Departed
[Signal =]

Arrived
[Signal =]

Trigger
[Trigger =]

Destination
Up

[Signal =]

Destination
Down

[Signal =]

No
Destination
[Signal =]

Approaching
Requested

Floor
[Signal =]

Floor
Number

[Stimulus =]

Stop
[Signal =]

Up
[Signal =]

Down
[Signal =]

Elevator
Started

[Signal =]

Elevator
Stopped
[Signal =]

Door
Opened

[Signal =]

Door
Closed

[Signal =]
Open
Door

[Signal =] Close
Door

[Signal =]

Up Request
[Signal =]

Down Request
[Signal =]

Figure 63.  Decomposition of Elevator Control and Management



542

Floor
Button

2.1
[Asynchronous
Device Input

Object =]

Floor
Lamp
2.2

[Passive
Device Output

Object =]

Direction
Lamp
2.3

[Passive
Device Output

Object =]

Direction Lamp
Output

[Output =]
Elevator
Status

[Stimulus =]

Elevator
Arrived

[Stimulus =]

Elevator
Arrived

[Stimulus =]

Floor Lamp
Output

[Output =]

Floor Button
Request
[Input =]

[Max. Rate .5
per sec. *]

Floor Button
Press

[Interrupt =]

Service Request
[Stimulus =]

Figure 64.  Decomposition of the Floor Subsystem



decomposes the elevator control system into three subsystems.  Two of these subsystems,

Elevator and Floor, are further decomposed.  The decomposition of the Elevator

subsystem is given in Figure 62.  Five of the six transformations in Figure 62 are

annotated with their classifications; one transformation, Elevator Control and

Management, is decomposed further, as illustrated in Figure 63.  The decomposition of

the Floor subsystem is depicted in Figure 64.

D.1.2  Generating the Design

After completing specification analysis, the designer decides to structure tasks as

a first step in the process of generating a concurrent design.  CODA requires no

consultation with the designer, except as needed to assign new task names.  

D.1.2.1  Structuring Tasks

Table 47 gives the outcome of CODA’s task structuring, including:  the tasks

created, the transformations allocated to each task, and the criterion used in determining

each allocation.  The designer saves the results of the task structuring before moving on

to other design chores.

D.1.2.2  Structuring Modules

Next, the designer decides to structure the transformations and data stores into

information hiding modules.  As with the task structuring, CODA requires no

consultation with the designer, except for renaming modules and operations.  The

designer saves the results from module structuring.  Table 48 reports the results of

CODA’s module structuring for the elevator control system.

543



Table 47.  Task Structuring Decisions for Elevator Control System

Task Transformation Structuring Criterion

Elevator Manager Accept New Request Asynchronous Internal Task

Scheduler Scheduler Asynchronous Internal Task

Monitor Elevator Buttons Elevator Button Asynchronous Device I/O Task

Monitor Floor Buttons Floor Button Asynchronous Device I/O Task

Monitor Arrival Sensors Floor Arrival Sensor Asynchronous Device I/O Task

Elevator Controller

Elevator Controller
Check This Floor

Check Next Destination

Door
Motor
Elevator Lamp
Update Status

Control Task
Asynchronous Internal Task &
Sequential Cohesion
Triggered Asynchronous Task &
Control Cohesion
Aggregation
Aggregation
Aggregation
Control Cohesion

Floor Lamps Monitor Floor Lamp Resource Monitor Task

Direction Lamps Monitor Direction Lamp Resource Monitor Task

544



Table 48.  Module Structuring Decisions for Elevator Control System

Module Transformation/Data Store Structuring Criterion

Elevator Status and Plan

Elevator Status and Plan
Check Next Destination
Check This Floor
Accept New Request
Update Status

Data-Abstraction Module
Read Operation of DAM
Update Operation of DAM
Update Operation of DAM
Update Operation of DAM

Elevator Control STM Elevator Controller State-Transition Module

Elevator Button Elevator Button Device-Interface Module

Floor Button Floor Button Device-Interface Module

Arrival Sensor Floor Arrival Sensor Device-Interface Module

Floor Lamp Floor Lamp Device-Interface Module

Direction Lamp Direction Lamp Device-Interface Module

Door Door Device-Interface Module

Motor Motor Device-Interface Module

Elevator Lamp Elevator Lamp Device-Interface Module

Scheduler Algorithm Scheduler Algorithm-Hiding Module

545



D.1.2.3  Integrating Tasks and Modules

Once both tasks and modules are structured, the designer decides to integrate the

two views.  CODA completes the integration without help from the designer.

D.1.2.4  Defining Task Interfaces

To complete the design for the elevator control system, the designer needs only to

define the interfaces among tasks.  CODA does not need to consult with the designer for

most decisions; however, since the designer is experienced, CODA, noticing that at least

one task receives queued messages from multiple sources, invites the designer to consider

assigning different priorities to the appropriate messages.  In this case, the designer

declines the invitation.

After the task interfaces are defined, CODA offers to let the designer review and

rename the new design elements.  Once renaming is completed, the designer saves the

design and then asks that task and module specifications and design histories be written

to disk.  Following the generation of specifications and design histories, CODA checks

the design for completeness and consistency and writes a design summary to disk.

Figures 65 and 66 show, in two parts, the design summary and completeness and

consistency report for the elevator control system design.

D.1.2.5  The Completed Design

The design generated by CODA for the elevator control system is depicted in

Figure 67.  This design differs in several details from the solution given by Gomaa.  One

difference of note is that CODA’s design includes two Elevator Manager tasks, while

546



547

Specification:   Elevator Control System 

TED:   A Default Environment (Message Queues, No Priority Queues)

8 TASKS

TASK 1 Elevator_Manager
TASK 2 Scheduler
TASK 3 Monitor_Elevator_Buttons
TASK 4 Monitor_Floor_Buttons
TASK 5 Monitor_Arrival_Sensors
TASK 6 Elevator_Controller
TASK 7 Floor_Lamps_Monitor
TASK 8 Direction_Lamps_Monitor

11 MODULES

IHM 1 Elevator_Status_and_Plan
IHM 2 Elevator_Control_STM
IHM 3 Elevator_Button
IHM 4 Floor_Button
IHM 5 Arrival_Sensor
IHM 6 Floor_Lamp
IHM 7 Direction_Lamp
IHM 8 Door
IHM 9 Motor
IHM 10 Elevator_Lamp
IHM 11 Scheduler_Algorithm

COMPLETENESS REPORT
-------------------

Each transformation is allocated to at least one task

Each transformation is allocated to a module

Each data store is allocated to a module

Each directed arc is allocated to the design

Each two-way arc is allocated to the design

Figure 65.  Design Summary and Completeness and Consistency Report
(Part One of Two)



548

CONSISTENCY REPORT
------------------

Each module is either contained in a task or
   is accessed by a task or by another module
Each module provides at least one operation
Each operation is provided by a module
Each task receives at least one input
Each task appears to write some output
Each internal event is both generated by and accepted by a task
Each external event and each timer event is accepted by a task
Each datum is either read or written by some task
Each message is either sent and received by a task
     or is carried in another message
Each queued message is held by a queue
Each queue holds at least one message
Each queue is either consumed by or encapsulated within a task
   or is a subqueue for a priority queue
Each priority queue heads at least one subqueue
Each priority queue is either owned by or enclosed within a task
Each message data is included in a message
Each parameter is either taken, yielded, or altered by some operation
No operation is provided by more than one module
No module is contained by more than one task
No event is accepted by more than one task
No event is generated by more than one task
No datum is written by more than one task
No queue is consumed by more than one task
No queue is encapsulated by more than one task
No queue is both consumed and encapsulated
No priority queue is owned by more than one task
No priority queue is enclosed by more than one task
No priority queue is both owned and enclosed
No queue is a subqueue more than one priority queue
No queued message is held by more than one queue
No message is sent by more than one task
No message is received by more than one task
No message datum is included in more than one message
Each message carried in another message is carried in exactly two messages
No tightly-coupled message answers more than one message
No parameter is yielded by more than one operation
No parameter is taken by more than one operation
No parameter is altered by more than one operation
No parameter is both yielded and altered

Figure 66.  Design Summary and Completeness and Consistency Report
(Part Two of Two)



549

U
pd

at
e 

P
la

n

U
pd

at
e 

S
ta

tu
s

N
ew

 F
lo

or

C
he

ck
D

es
tin

at
io

n

E
le

va
to

r 
S

ta
tu

s 
an

d 
P

la
n

M
ot

or
D

oo
r

E
le

va
to

r
La

m
p

E
le

va
to

r
C

on
tr

ol
 S

T
M

U
p 

R
eq

ue
st

,
D

ow
n 

R
eq

ue
st

E
le

va
to

r 
C

on
tr

ol
le

r

M
ot

or
 C

om
m

an
d

D
oo

r 
C

om
m

an
d

M
ot

or
 R

es
po

ns
e

D
oo

r 
R

es
po

ns
e

E
le

va
to

r 
La

m
p

O
ut

pu
t

F
lo

or
 L

am
ps

 M
on

ito
r

D
ire

ct
io

n 
La

m
ps

 M
on

ito
r

E
le

va
to

r
A

rr
iv

ed
E

le
va

to
r

S
ta

tu
s

C
ha

ng
e

E
le

va
to

r
S

ta
tu

s
C

ha
ng

e

A
rr

iv
al

E
le

va
to

r
R

eq
ue

st
s

E
le

va
to

r
M

an
ag

er

S
ch

ed
ul

er
R

eq
ue

st

R
id

er
R

eq
ue

st

E
le

va
to

r
C

om
m

itm
en

t

S
er

vi
ce

R
eq

ue
st

s
an

d
N

ot
ic

es

S
ch

ed
ul

er
A

lg
or

tih
m

S
ch

ed
ul

er

M
on

ito
r 

E
le

va
to

r 
B

ut
to

ns

E
le

va
to

r
B

ut
to

n
In

te
rr

up
t

E
le

va
to

r
B

ut
to

n
In

pu
t

E
le

va
to

r
B

ut
to

n

M
on

ito
r 

F
lo

or
 B

ut
to

ns

F
lo

or
B

ut
to

n F
lo

or
B

ut
to

n
In

pu
t

F
lo

or
B

ut
to

n
In

te
rr

up
t

M
on

ito
r 

A
rr

iv
al

 S
en

so
rs

S
er

vi
ce

R
eq

ue
st

A
rr

iv
al

S
en

so
r

A
rr

iv
al

S
en

so
r

In
te

rr
up

t

A
rr

iv
al

S
en

so
r

In
pu

t

F
lo

or
 L

am
p 

O
ut

pu
t

D
ire

ct
io

n 
La

m
p 

O
ut

pu
t

F
lo

or
La

m
p

D
ire

ct
io

n
La

m
p

F
lo

or
La

m
p

M
es

sa
ge

s

D
ire

ct
io

n
La

m
p

M
es

sa
ge

s

Figure 67.  Generated Design for the Elevator Control System - Default Target
Environment - No Messages Assigned Priority



Gomaa’s solution uses a single Elevator Manager task.  CODA produces two tasks based

upon the cardinality of the transformation, Accept New Request, from which the Elevator

Manager task is allocated.  Gomaa decided that only one Elevator Manager task is

required.  Gomaa’s decision results from an understanding that the processing in the

transformation, Accept New Request, is rather simple and easy to invert, whereas, the

processing represented by the control transformation, Elevator Controller, and its

aggregated objects, is complicated and more difficult to invert.  In addition, Gomaa

envisions a design where a single Elevator Manager task can provide inputs to numerous

Elevator Controller tasks.  CODA is incapable of reaching this same conclusion from the

facts at hand.

A second difference occurs in the interface between the Elevator Manager and

Elevator Controller tasks.  CODA maps two event flows, Up Request and Down Request,

from the Elevator Manager onto software signals for the Elevator Controller task.  CODA

takes this mapping because the Elevator Manager and the Elevator Controller must

synchronize on these events and because the default target environment description

indicates that up to two inter-task signals are supported between each pair of tasks in a

design.  Gomaa chooses to map these event flows onto a tightly-coupled message.

CODA might also choose to map these event flows to a tightly-coupled message, but

only when the number of event flows to be sent between a pair of tasks exceeds the

maximum permitted for the target environment.

550



A third difference between CODA’s design and Gomaa’s solution involves the

interface between the Scheduler and two other tasks:  the Elevator Manager and the

Elevator Controller.  CODA maps two data flows, Elevator Commitment from the

Elevator Manager and Elevator Status from the Elevator Controller, to queued messages

for the Scheduler.  Gomaa, instead, maps these data flows onto accesses to a data store,

Elevator Status and Plan.  This difference results from the fact that Gomaa constructed

the data/control flow diagram in anticipation of a distributed solution.  Examined in light

of distributing the Scheduler task to a separate processor from the Elevator Manager and

Elevator Controller tasks, the data flows between these tasks must be mapped to

messages.  When Gomaa, instead, uses the same data/control flow diagram to generate a

design for a single-processor system, he decides simply to replace the data flows to the

Scheduler with accesses to a data store, Elevator Status and Plan, shared among all three

tasks.  As a secondary effect, Gomaa’s solution shows an operation, Select Elevator, for a

data-abstraction module, Elevator Status and Plan, not included in the design generated

by CODA.  Gomaa’s alternative mapping leads to an efficient solution for cases where the

design will run an a single processor system.  CODA is unable to make these kinds of

adjustments, and must, therefore, adhere more closely to the structures shown on the

data/control flow diagram.

The mapping generated by CODA, while suitable for a distributed design, leads to

an inefficient solution for cases where the design will execute on a single processor.  For

CODA’s design, the Scheduler must be assumed to maintain an independent view of the

551



plan and status for all elevators and must be assumed to update this view based upon

messages received from the Elevator Manager and Elevator Controller tasks.  Since the

Scheduler subsystem is not decomposed further on the data/control flow diagram, these

additional details are not included in the design.

Another difference between the design generated by CODA and the solution

provided by Gomaa involves an operation of the Elevator Status and Plan

data-abstraction module.  CODA generates an operation, Update Status, not included in

Gomaa’s solution.  In a discussion about this point, Gomaa indicated to the author that the

operation should be included in his solution.  The operation was simply overlooked in the

design produced by Gomaa. [Gomaa93, Chapter24]

D.1.3  Differentiating Queued Messages by Priority 

Suppose the designer believes that the elevator control system will run more

smoothly if preference is given to decisions that involve the scheduler.  If this were the

case, the designer might decide to give higher priority to messages exchanged between

the Scheduler task and the internal, control-related tasks, that is, the Elevator Manager

and the Elevator Controller tasks.  This policy can be incorporated into the design by

redefining the task interfaces.  First, the designer moves an appropriate copy of the design

produced previously, that is, a design with the task and module structures defined and

integrated, to a new workspace.  The movement of designs between workspaces is

conducted outside the prototype, using file copy facilities from the hosting operating

system.  Then, the designer restores the partial design and repeats the definition of the

552



task interfaces.  Since the designer is experienced, CODA invites the designer to assign

message priorities.  In this case, the designer accepts the invitation and assigns a higher

priority to requests received by the Elevator Manager task from the Scheduler task.  The

designer also assigns higher priority to messages received by the Scheduler when those

messages arrive from the Elevator Manager task or the Elevator Controller task.  In

effect, messages generated within the elevator control system are given preference over

requests from outside the system.  After message priorities are assigned, CODA allocates

message-queuing mechanisms, as appropriate, and then invites the designer to review and

rename task-interface elements.  Once renaming is complete, the designer saves the

design and then writes the specifications, histories, and summary to disk.

D.1.3.1  Priority Message Queuing Services Unavailable

The alternate design generated by CODA based on varying message priorities is

shown in Figure 68.  Since the designer uses the description for the default target

environment, priority message queues are unavailable.  For this reason, CODA simulates

priority message queues by allocating a separate message queue for each priority level

and then maps messages into the appropriate queues by priority and destination.

D.1.3.2  Priority Message Queuing Services Available

CODA need not have simulated priority message queues had the designer chosen

to use a target environment description where priority message queues are available.

Suppose the designer loads a target environment description that includes priority

message queues.  Loading a new target environment description requires any design in

553



554

U
pd

at
e 

P
la

n

U
pd

at
e 

S
ta

tu
s

N
ew

 F
lo

or

C
he

ck
D

es
tin

at
io

n

E
le

va
to

r 
S

ta
tu

s 
an

d 
P

la
n

M
o

to
r

D
oo

r

E
le

va
to

r
L

a
m

p

E
le

va
to

r
C

on
tr

ol
 S

T
M

U
p 

R
eq

ue
st

,
D

ow
n 

R
eq

ue
st

E
le

va
to

r 
C

on
tr

ol
le

r

M
o

to
r 

C
om

m
a

n
d

D
o

o
r 

C
om

m
a

n
d

M
o

to
r 

R
e

sp
o

n
se

D
oo

r 
R

es
po

ns
e

E
le

va
to

r 
La

m
p

O
ut

pu
t

F
lo

or
 L

am
ps

 M
on

ito
r

D
ire

ct
io

n 
La

m
ps

 M
on

ito
r

E
le

va
to

r
A

rr
iv

ed
E

le
va

to
r

S
ta

tu
s

C
ha

ng
e

E
le

va
to

r
S

ta
tu

s
C

ha
ng

e

A
rr

iv
al

C
us

to
m

er
R

eq
ue

st
s

P
ri

or
ity

 0

E
le

va
to

r
M

an
ag

er

S
ch

ed
ul

er
R

eq
ue

st

C
us

to
m

er
R

eq
ue

st

E
le

va
to

r
C

om
m

itm
e

n
t

E
le

va
to

r
N

ot
ic

es
P

ri
or

ity
 1

S
ch

ed
ul

er
A

lg
or

tih
m

S
ch

ed
ul

er

M
on

ito
r 

E
le

va
to

r 
B

ut
to

ns

E
le

va
to

r
B

ut
to

n
In

te
rr

up
t

E
le

va
to

r
B

ut
to

n
In

pu
t

E
le

va
to

r
B

ut
to

n

M
on

ito
r 

F
lo

or
 B

ut
to

ns

F
lo

o
r

B
ut

to
n F

lo
o

r
B

ut
to

n
In

pu
t

F
lo

o
r

B
ut

to
n

In
te

rr
up

t

M
on

ito
r 

A
rr

iv
al

 S
en

so
rs

S
er

vi
ce

R
eq

ue
st

A
rr

iv
al

S
en

so
r

A
rr

iv
al

S
en

so
r

In
te

rr
up

t

A
rr

iv
al

S
en

so
r

In
pu

t

F
lo

or
 L

am
p 

O
ut

pu
t

D
ire

ct
io

n 
La

m
p 

O
ut

pu
t

F
lo

o
r

L
a

m
p

D
ire

ct
io

n
L

a
m

p

F
lo

o
r

L
a

m
p

M
es

sa
ge

s

D
ire

ct
io

n
L

a
m

p
M

es
sa

ge
s

S
ch

ed
ul

er
R

eq
ue

st
s

P
ri

or
ity

 1

C
us

to
m

er
R

eq
ue

st
s

P
ri

or
ity

 0

Figure 68.  Design for the Elevator Control System - Default Target Environment -
Queued Messages Assigned Varying Priorities



progress to be deleted from memory because the existing design might no longer reflect

the proper target environment.  The designer then restores an existing copy of a partially

completed design that was moved previously to the appropriate workspace.  Assuming

that the preexisting design lacks a definition for task interfaces and that the designer asks

CODA to define task interfaces,  Figure 69 shows the alternate design generated based on

the new target environment description.

D.2  Elevator Control System for a Large Building

 Suppose that a design is required to control twelve elevators in a large building

with 48 floors.   Given the description for the default target environment, CODA extends

its use of task inversion to cover the Elevator Manager and Elevator Controller tasks.

This occurs because the total of twelve elevators exceeds the task inversion threshold, set

at eight for the default target environment.  The resulting inversion of the Elevator

Manager and Elevator Controller tasks causes CODA to define some of the interfaces for

these tasks differently from the interfaces defined in the previous designs for a smaller

building.  Figure 70 depicts the design for a large building, as generated by the prototype.

The Elevator Manager and the Elevator Controller tasks, replicated in previous

designs, are now each implemented by a single task.  Context switching between

elevators must be handled within each of the tasks.  Consequently, the Direction Lamp

and Floor Lamp modules are no longer accessed by multiple tasks.  For this reason, these

two, device-interface modules are now placed within the Elevator Controller task, rather

than within separate, resource-monitor tasks.  Two other design changes also appear.

555



556

U
pd

at
e 

P
la

n

U
pd

at
e 

S
ta

tu
s

N
ew

 F
lo

or

C
he

ck
D

es
tin

at
io

n

E
le

va
to

r 
S

ta
tu

s 
an

d 
P

la
n

M
o

to
r

D
oo

r

E
le

va
to

r
L

a
m

p

E
le

va
to

r
C

on
tr

ol
 S

T
M

U
p 

R
eq

ue
st

,
D

ow
n 

R
eq

ue
st

E
le

va
to

r 
C

on
tr

ol
le

r

M
o

to
r 

C
om

m
a

n
d

D
o

o
r 

C
om

m
a

n
d

M
o

to
r 

R
e

sp
o

n
se

D
oo

r 
R

es
po

ns
e

E
le

va
to

r 
La

m
p

O
ut

pu
t

F
lo

or
 L

am
ps

 M
on

ito
r

D
ire

ct
io

n 
La

m
ps

 M
on

ito
r

E
le

va
to

r
A

rr
iv

ed
E

le
va

to
r

S
ta

tu
s

C
ha

ng
e

E
le

va
to

r
S

ta
tu

s
C

ha
ng

e

A
rr

iv
al

E
le

va
to

r
R

eq
ue

st
s

E
le

va
to

r
M

an
ag

er

S
ch

ed
ul

er
R

eq
ue

st

R
id

er
R

eq
ue

st

E
le

va
to

r
C

om
m

itm
e

n
t

S
ch

ed
ul

er
A

lg
or

tih
m

S
ch

ed
ul

er

M
on

ito
r 

E
le

va
to

r 
B

ut
to

ns

E
le

va
to

r
B

ut
to

n
In

te
rr

up
t

E
le

va
to

r
B

ut
to

n
In

pu
t

E
le

va
to

r
B

ut
to

n

M
on

ito
r 

F
lo

or
 B

ut
to

ns

F
lo

o
r

B
ut

to
n F

lo
o

r
B

ut
to

n
In

pu
t

F
lo

o
r

B
ut

to
n

In
te

rr
up

t

M
on

ito
r 

A
rr

iv
al

 S
en

so
rs

S
er

vi
ce

R
eq

ue
st

A
rr

iv
al

S
en

so
r

A
rr

iv
al

S
en

so
r

In
te

rr
up

t

A
rr

iv
al

S
en

so
r

In
pu

t

F
lo

or
 L

am
p 

O
ut

pu
t

D
ire

ct
io

n 
La

m
p 

O
ut

pu
t

F
lo

o
r

L
a

m
p

D
ire

ct
io

n
L

a
m

p

F
lo

o
r

L
a

m
p

M
es

sa
ge

s

D
ire

ct
io

n
L

a
m

p
M

es
sa

ge
s

S
er

vi
ce

R
eq

ue
st

s
an

d
N

ot
ic

es

Figure 69.  Design for the Elevator Control System - Priority Message Queues Available
- Queued Messages Assigned Varying Priorities



557

U
pd

at
e 

P
la

n

U
pd

at
e 

S
ta

tu
s

N
ew

 F
lo

or

C
he

ck
D

es
tin

at
io

n

E
le

va
to

r 
S

ta
tu

s 
an

d 
P

la
n

M
o

to
r

D
oo

r

E
le

va
to

r
L

a
m

p

E
le

va
to

r
C

on
tr

ol
 S

T
M

N
ew

R
eq

ue
st

E
le

va
to

r 
C

on
tr

ol
le

r

M
o

to
r 

C
om

m
a

n
d

D
o

o
r 

C
om

m
a

n
d

M
o

to
r 

R
e

sp
o

n
se

D
oo

r 
R

es
po

ns
e

E
le

va
to

r 
La

m
p

O
ut

pu
t

E
le

va
to

r
S

ta
tu

s
C

ha
ng

e

A
rr

iv
al

E
le

va
to

r
R

eq
ue

st
s

E
le

va
to

r
M

an
ag

er
S

ch
ed

ul
er

R
eq

ue
st

R
id

er
R

eq
ue

st

E
le

va
to

r
C

om
m

itm
e

n
t

S
ch

ed
ul

er
A

lg
or

tih
m

S
ch

ed
ul

er

M
on

ito
r 

E
le

va
to

r 
B

ut
to

ns

E
le

va
to

r
B

ut
to

n
In

te
rr

up
t

E
le

va
to

r
B

ut
to

n
In

pu
t

E
le

va
to

r
B

ut
to

n

M
on

ito
r 

F
lo

or
 B

ut
to

ns

F
lo

o
r

B
ut

to
n F

lo
o

r
B

ut
to

n
In

pu
t

F
lo

o
r

B
ut

to
n

In
te

rr
up

t

M
on

ito
r 

A
rr

iv
al

 S
en

so
rs

S
er

vi
ce

R
eq

ue
st

A
rr

iv
al

S
en

so
r

A
rr

iv
al

S
en

so
r

In
te

rr
up

t

A
rr

iv
al

S
en

so
r

In
pu

t

F
lo

or
 L

am
p 

O
ut

pu
t

D
ire

ct
io

n 
La

m
p 

O
ut

pu
t

F
lo

o
r

L
a

m
p

D
ire

ct
io

n
L

a
m

p

S
er

vi
ce

R
eq

ue
st

s
an

d
N

ot
ic

es

A
rr

iv
al

s

Figure 70.  Design for the Elevator Control System - Default Target Environment -
Large Building (12 Elevators and 48 Floors)



First, the interface between the Elevator Manager and the Elevator Controller tasks is

now defined to be a tightly-coupled message, rather than two software signals.  CODA

makes this change because the destination of the event flows, Up Request and Down

Request, can no longer be identified solely from the receiving task.  Instead, the Elevator

Manager task must include data along with each event flow to identify the specific

elevator for which the events apply.  A second design change involves the Arrival

messages received by the Elevator Controller task from the Monitor Arrival Sensors task.

These messages are now placed into a message queue, Arrivals, for the receiving task,

Elevator Controller.  Since the Elevator Controller task handles multiple elevators, the

possibility exists that the Elevator Controller task will not be ready to receive an Arrival

message at the time the message is sent.  To avoid delaying the Monitor Arrival Sensors

task, the Arrival messages must be queued.

Several differences in the various designs generated by CODA for the elevator

control system result from differences in element cardinalities, relative to the task

inversion threshold.  Ideally, a designer might strive to produce a design that does not

vary based on the number of elevators and floors within the target building.  To achieve

this goal, a design for a distributed elevator control system appears attractive.  Such a

design requires replicating the Elevator Controller task and the Elevator Manager task for

each elevator and mapping each pair of these tasks to a processor for each elevator.  The

tasks for the floor subsystem might then be allocated to a separate processor, as could the

Scheduler task.  As currently defined, CODA cannot contemplate such trade-offs.  

558


